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Abstract
The timing of fall foliage coloration, especially peak coloration, is of great importance to the climate
change research community as it has implications for carbon storage in forests. However, its long-
term variation and response to climate change are poorly understood. To address this issue, we
examined the long-term trends and breakpoints in satellite derived peak coloration onset from 1982
to 2014 using an innovative approach that combines Singular Spectrum Analysis (SSA) with Breaks
for Additive Seasonal and Trend (BFAST). The peak coloration trend was then evaluated using both
field foliage coloration observations and flux tower measurements. Finally, interannual changes in
peak coloration onset were correlated with temperature and precipitation variation. Results showed
that temporal trends in satellite-derived peak coloration onset were comparable with both field
observations and flux tower measurements of gross primary productivity. Specifically, a breakpoint
in long-term peak coloration onset was detected in 25% of pixels which were mainly distributed at
latitudes north of 37°N. The breakpoint tended to occur between 1998 and 2004. Peak coloration
onset was delayed before the breakpoint while it was transformed to an early trend after the
breakpoint in nearly all pixels. The remaining 75% of pixels exhibited monotonic trends, 35% of
which revealed a late trend and 40% an early trend. The results indicate that the onset of peak
coloration experienced a late trend during the 1980s and 1990s in most deciduous and mixed
forests. However, the trend was reversed during the most recent decade when the timing of peak
coloration became earlier. The onset of peak coloration was significantly correlated with late
summer and autumn temperature in 55.5% of pixels from 1982 to 2014. This pattern of
temperature impacts was also verified using field observations and flux tower measurements. In the
remaining 44.5% of pixels, 12.2% of pixels showed significantly positive correlation between the
onset of peak coloration and cumulative precipitation during late summer and autumn period from
1982 to 2014. Our findings can improve understanding of the impact of changes in autumn
phenology on carbon uptake in forests, which in turn facilitate more reliable measures of carbon
dynamics in vegetation–climate interactions models.
Introduction

Vegetation phenology plays a critical role in charac-
terizing land-surface carbon fluxes, parameterizing
numerical weather prediction models (Gutman and
Ignatov 1998) and land surface process models
© 2017 IOP Publishing Ltd
(Thornes 1985, Zhang et al 2002), and monitoring
ecosystem dynamics and climate impacts (Menzel et al
2006, Zhang et al 2014, Liu et al 2016). Recent
warming has been reported to lead to earlier spring
and later autumn events (Myneni et al 1997, Keenan
et al 2014), and increased vegetation activity (Graven
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et al 2013). Although early greening trends and
lengthening of the growing season are expected to
increase carbon sequestration and extend the net
carbon uptake period in deciduous forests (Black et al
2000, Churkina et al 2005, Dragoni et al 2011),
autumn warming suggests net carbon dioxide losses
may occur in northern ecosystems (Piao et al 2008).

Spring phenology, in particular, has received much
attention from the global change community during
the past several decades because it is one of the most
widely observed and recorded seasonal events and has
proven to be an important bio-indicator of climate
change (Beaubien and Freeland 2000, Badeck et al
2004, Richardson et al 2009). However, less effort has
been dedicated to studying autumn phenology due to
its complex environmental drivers (Cleland et al 2007,
Yang et al 2012). Nonetheless, quantifying changes in
autumn phenology is important as it alters the
reproductive capacity of individual species, regulates
growing season duration, and affects net productivity
and carbon uptake of ecosystems (Garonna et al 2014,
Gallinat et al 2015, Liu et al 2015).

Previous investigations of autumn phenophases
mainly focused on intra- or inter- annual variations in
senescence and dormancy onset (Jeong et al 2011, Zhu
et al 2012, Yang et al 2015, Gill et al 2015). In fact,
autumn phenology, ranging from the date when leaves
first change color to the date when 100% abscission
occurs, is considered to be a multi-event progression
(Denny et al 2014). The United States Weather Chanel
(www.weather.com/) and field foliage network (www.
foliagenetwork.net/) define the fall foliage color status
as little/no change, low coloration, moderate colora-
tion, peak coloration and post-peak coloration.
Among all fall foliage stages, peak coloration has
the broadest range of applications for the tourism
industry related to the timing of ‘leaf peeping’ trips
(Ge et al 2013) and significant implications for
climate change and ecosystem management activities.
Various fall foliage stages at a large scale can
be successfully monitored from satellite-derived
temporally-normalized brownness indices (Zhang
and Goldberg 2011, Zhang et al 2012). However,
examination of the temporal trend in peak coloration
and its response to climate change at a large scale has
not yet been undertaken.

The temporal trend in phenological events has
been frequently detected using a simple linear
regression (SLR) approach to monitor recent climate
change (Menzel and Fabian 1999, Schwartz and Reiter
2000, Garonna et al 2014). The SLRmethod provides a
slope representing the average rate of change in
phenological events over a study period, but this
approach has a number of major limitations when
searching for signals in short and noisy phenological
times series (Sparks and Menzel 2002, Sparks and
Tryjanowski 2005). Specifically, the SLR method
requires the time series to have a comparatively linear
trend and it is very sensitive to outliers and boundary
2

values (Schlittgen and Streitberg 1999). Moreover, the
SLR slope (magnitude) is largely influenced by the
length of the time series and its start and end dates,
especially for highly variable phenological time series
over a few decades. In order to overcome some of these
shortcomings, Keatley and Hudson (2004) introduced
the use of singular spectrum analysis (SSA) into the
examination of long-term phenological time series.
SSA has no specific distributional assumptions. In
addition, it uses a data-adaptive basis set, instead of
fitting an assumed model to the available series, to
overcome the problems of finite sample length and
noisiness of sampled time series (Hudson and Keatley
2010).

Analyzing long-term phenological time series
reveals temporal variations associated with the study
period. This is evident in North America where trends
in spring green up differ dramatically between
different time periods, such as, 1982–2005 (Zhang
et al 2007), 1982–2006 (White et al 2009), 1982–2003
(Reed 2006), and 1982–2008 (Jeong et al 2011). The
difference is likely associated with the research
approaches in these studies but the length of the
time series, start and end dates, and extreme values are
also critical in determining whether the trends can be
detected at a significant level (Sparks and Menzel
2002). Thus, it is necessary to incorporate mathemat-
ical methods capable of automatically identifying the
change point in a long-term phenological time series.
Such change points have been detected using several
approaches, such as Breaks for Additive Seasonal and
Trend (BFAST) (Verbesselt et al 2010), nonparametric
methods (Itoh and Kurths 2010), and Bayesian-based
approaches (Dose and Menzel 2004, Mohammad-
Djafari and Féron 2006).

This study aimed to investigate the spatio-
temporal change in the onset of peak coloration in
both deciduous broadleaf and mixed forests in the
central and eastern United States from 1982 to 2014
and its responses to climate change. To reach this goal,
a time series of daily EVI2 (two band enhanced
vegetation index) was derived from the Advanced Very
High Resolution Radiometer (AVHRR, 1982–1999)
and Moderate Resolution Imaging Spectroradiometer
(MODIS, 2000–2014) records at a spatial resolution of
0.05°. A Hybrid Piecewise Logistic Model (HPLM)
was then used to reconstruct the EVI2 time series. The
reconstructed EVI2 data were converted to a
temporally-normalized brownness index to determine
the onset of peak coloration. Subsequently, the
temporal trends and change points in the time series
of long-term peak coloration onset were both
identified at a pixel level by combining SSA with
BFAST methods. In addition, the trends were
evaluated using field observations including leaf
coloration and gross primary productivity data.
Finally, the response of peak coloration onset to
interannual variation in temperature and precipitation
was examined at each pixel and field observation site.
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Figure 1. Spatial distribution of the flux sites (solid circles) in
deciduous broadleaf andmixed forests (green) in the central and
easternUnited States. The solid red circles represent the siteswith
gap-filled GPP datasets over 10 yr, whichwere used in this study.
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Materials and methods

Phenological detection from satellite data
The long-term daily EVI2 time series over the last
33 yr (1982–2014) was used to retrieve the onset of
peak coloration in deciduous and mixed forests across
the central and eastern United States (figure 1).
Specifically, EVI2 was calculated from the daily red and
near-infrared reflectance in the AVHRR long term data
record (LTDR, 1982–1999) and the MODIS climate
modeling grid (CMG, 2000–2014) data at a spatial
resolution of 0.05° (∽5 km). This dataset was obtained
from the University of Arizona (http://vip.arizona.
edu/viplab_data_explorer). EVI2 has advantages over
NDVI (normalized difference vegetation index) in
quantifying vegetation activity but also remains
functionally equivalent to EVI (enhanced vegetation
index) (Huete et al 2002, Jiang et al 2008). AVHRR
LTDR quality was improved by preprocessing radio-
metric corrections, viewing and illumination adjust-
ment, and cloud screen and water-vapor correction
(Pedelty et al 2007). Furthermore, AVHRR LTDR was
bridged to MODIS CMG using a set of linear
polynomials (Tsend-Ayush et al 2012).

HPLM was used to reconstruct the EVI2 temporal
trajectory, which has been demonstrated to effectively
minimize noise, such as the presence of snow cover
and cloud, remove irregular values, and fill in missing
observations in the EVI2 time series (Zhang 2015).
The reconstructed EVI2 time series from the mid
maturity phase to mid dormancy phase was then used
to calculate the temporally-normalized brownness
index during the senescence phase at the pixel
level (Zhang and Goldberg 2011). The temporally-
normalized brownness index is capable of measuring
the relative change in colored foliage within a pixel. It
is independent of surface background, vegetation
abundance, and species composition. In particular, the
onset of peak coloration was defined as the date at
3

which the temporally-normalized brownness index
was equal to 0.6, which presented the maximal colored
foliage cover in tree canopies (Zhang and Goldberg
2011).

The onset of peak coloration in the deciduous and
mixed forests was extracted by overlaying the extracted
peak coloration map on the MODIS Land Cover Type
CMG product (MCD12C1) at a 0.05° spatial resolu-
tion. The climatology of peak coloration onset was
further calculated using average and standard devia-
tion from 1982 to 2014.

Field observations of fall foliage coloration at
Harvard Forest
To evaluate the temporal trend in satellite-derived peak
coloration, field observations of fall foliage coloration
were collected from Harvard Forest from 1991 to 2014
(http://harvardforest.fas.harvard.edu:8080/exist/apps/
datasets/showData.html?id=hf003).This site is located
at 42°320N and 72°110W in central Massachusetts and
is the only one with a long-term record of woody
plant fall phenology in the United States. The mean
annual temperature is 6.62 °C and mean annual
precipitation is 1071 mm. The fall foliage progress
was observed for 33 dominant species representing
both canopy and understory individuals. The
observations included the percentage of leaves that
had changed color on a given plant and the
percentage of leaves that had fallen at 3- to 7 d
intervals during the senescence phase. The species
based observations could be accurately aggregated by
weighting their abundance to be compatible with
remotely sensed phenology (Liang et al 2011, Liu et al
2015), however, the limitation of an unknown
percent area of each species in this site makes it
impossible to obtain area-weighted foliage coloration
data. Thus, to match field measurements to satellite
pixels, we calculated the average fraction of foliage
coloration at each observation date. The temporal
observations of foliage coloration were subsequently
fitted using a logistic model for each year. The start
date of peak coloration was estimated when the
percentage of colored foliage reached 60% (Zhang
and Goldberg 2011).

Phenological detections from GPP data
We further collected flux-tower measurements of gross
primary productivity (GPP) as an alternative dataset
to further evaluate the trend in satellite-based peak
coloration onset. Across the central and eastern United
States, there are a total of 21 flux tower sites with
deciduous broadleaf and mixed forests (figure 1).
However, there are only three sites with gap-filled GPP
data longer than 10 yr, which are Harvard Forest
in Massachusetts (US-Ha1; 1991–2014), Morgan
Monroe State Forest in Indiana (US-MMS; 1999–
2014), and Park Falls in Wisconsin (US-PFa; 1997–
2014). At Park Falls, the mean annual temperature is
4.33 °C and mean annual precipitation is 823 mm. At
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Figure 2. An example of raw GPP data with a reconstructed curve from Park Falls in 2001 and the diagram of the dynamic threshold
approach for extracting the onset of peak coloration (PC).
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Morgan Monroe State Forest, the mean annual
temperature is 10.85 °C and mean annual precipita-
tion is 1032 mm. The level2 flux data in these three
sites were downloaded from the American FLUXNET
(http://ameriflux.ornl.gov).

The level2 data were recorded hourly, so that we
first calculated daily mean GPP using the arithmetic
average. Due to the noise inherent in original GPP
time series, we smoothed the daily GPP time series
using the HPLM method (Zhang 2015). An example
of smoothing daily GPP time series is presented in
figure 2. Based on daily smoothed time series, a
dynamic threshold method could be applied to detect
fall phenological events (Richardson et al 2010). In this
study, we calculated the GPP-based onset date of peak
foliage coloration according to the dynamic threshold
that was the same as the threshold for the temporally-
normalized brownness index (figure 2).

Daily temperature and precipitation
We obtained 3-hourly land surface temperature and
precipitation data, from 1982 to 2014 at a spatial
resolution of 32 km for the United States from the
NCEP (National Centers for Environmental Predic-
tion) North America Regional Reanalysis (NARR)
(Mesinger et al 2006). This dataset was produced using
a fixed assimilation/forecast model and is the most
accurate and consistent long-term dataset that covers
the entire North American continent (Mesinger et al
2006). The daily mean temperature was generated by
averaging the 3-hourly land surface temperature
values. The daily total precipitation was generated
by summing the 3-hourly precipitation values.

Field measurements of temperature and precipi-
tation were obtained for the field sites. The daily air
temperature and precipitation at Harvard Forest was
downloaded from ClimDB/HydroDB Data Retrieval
Program (http://climhy.lternet.edu/plot.pl). The air
temperature and precipitation at Morgan Monroe
State Forest and Park Falls were included in the level2
flux dataset. The daily mean temperature and daily
4

total precipitation at these two flux tower sites were
computed by averaging hourly values and summing
hourly values, respectively.

Trend analysis for phenological time series
The satellite-based onset of peak coloration from 1982
to 2014 in the central and eastern United States was
examined using SSA in the R package (‘Rssa’) to
identify temporal trends. The SSA method is a time
series analysis method which is capable of decom-
posing and forecasting time series. The original time
series is decomposed by singular value decomposition
(SVD) as a trend and oscillatory components that
could be related to seasonality and noise (Golyandina
and Korobeynikov 2014). The principal components
that were considered to describe the trend were
determined using the scree plot which is a plot of the
eigenvalues of a correlation matrix in descending order
of their magnitude (Vautard andGhil 1989). Given that
SSA requires that the datasets are complete, we only
analyzed phenological time series without missing
values. Thewindow length in SSAwas set to 10 years due
to the climate variability in 1980s, 1990s, and 2000s.

Breakpoints in the first reconstructed series from
SSA were examined using the BFASTmethod in the R
package (‘BFAST’). This method is capable of
capturing long-term phenological changes, abrupt
changes and gradual trends in satellite image time
series (Verbesselt et al 2010). Specifically, the ordinary
least squares residuals-based moving sum (MOSUM)
test was first used to test whether one or more
breakpoints occurred in the time series. If the
MOSUM test indicated significant change (p < 0.05),
the number of breakpoints was determined by the
Bayesian Information Criterion (BIC), and the date
and associated confidence interval for each break-
point were estimated (Zeileis et al 2002, Bai and
Perron 2003, Zeileis 2005). In this study, the
breakpoint was defined as the year that divided the
phenological time series into two stages of an early
and a late trend. Although the BFAST was able to

http://ameriflux.ornl.gov
http://climhy.lternet.edu/plot.pl
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Figure 3. Spatial distribution of peak coloration onset in deciduous and mixed forests in the central and eastern United States from
1982 to 2014. (a) Mean onset of peak coloration (DOY) and (b) standard deviation. The solid line is the state boundary in the United
States.
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detect all breakpoints that were caused by changes in
either amplitude or direction of the slope in the long-
term phenological time series, we only selected the
breakpoint in which the slope direction changed. For
pixels in which a breakpoint was detected, the entire
time period was separated into the first time period
and the second time period.

Similarly, temporal trends and breakpoints were
examined for the long-term field-observed phenolog-
ical time series at Harvard Forest and GPP-based peak
coloration time series at Harvard Forest, Morgan
Monroe State Forest, and Park Falls flux tower sites
using the SSA-BFAST method.

Investigation of peak coloration response to
temperature and precipitation
The timing of phenological events have been found to
bemainly influenced by temperature within a specified
period length (PL, days) prior to the phenological
event occurrence (Matsumoto et al 2003, Chen and Xu
2012). This specified period can be quantified using a
critical climate period analysis (Craine et al 2012). To
determine the optimal PL (critical climate period), we
first calculated the correlation coefficients between the
onset of peak coloration in a time series and a set of
mean temperatures calculated with different PL values.
The PL was defined as follows:

PL ¼ bPLþmPL

where bPL is the basic PL that refers to the time
period (days) between the earliest and latest date in
the time series of peak coloration onset in a pixel, and
mPL is a lag changing from 1 to 90 d at a one-day
interval.

For a given mPL, the mean temperature during the
PL was calculated for each year. A correlation was
further established from the time series (from 1982 to
2014) of peak coloration onset and the mean
temperature for a given pixel. With the variation
in mPL (1–90 d) and the corresponding PL, 90
5

correlation coefficients were generated. Subsequently,
we obtained the optimal PL by identifying the largest
correlation coefficient for a given pixel.

This approach was also applied to calculate the
optimal PL between the onset of peak coloration and
cumulative precipitation in order to investigate the
effects of precipitation. The optimal PL of cumulative
precipitation differs from that of mean temperature
because these two factors influence the onset of peak
coloration with different mechanisms.

Similarly, we also determined the optimal PL
temperature and precipitation for the field observations
at Harvard Forest, Morgan Monroe State Forest, and
Park Falls. Furthermore, we examined the temporal
trend and breakpoint in optimal PL mean temperature
and cumulative precipitation time series using both
simple linear regression and SSA-BFAST to explain the
long- and short-term trends in peak coloration onset.
Results

Climatology of peak coloration onset
Figure 3 shows the spatial pattern of mean peak
coloration onset from 1982 to 2014 together with the
standard deviation for deciduous and mixed forests
across the central and eastern United States. In general,
the timing of peak coloration onset in day of year (DOY)
was gradually delayed with decreasing latitude, ranging
from DOY 260 in northern Minnesota, Wisconsin and
Maine to DOY 320 in the central region of Louisiana,
Alabama andGeorgia (figure 3(a)). The spatial shift took
about twomonths from northern to southern areas. The
standard deviation of peak coloration dates was generally
less than 10 d in the northern region,whereas it was up to
20 d in the southern area (figure 3(b)).

Evaluation of trends in satellite-derived peak
coloration onset at three observation sites
While landscape phenology can be scaled up from field
observations of individual species to effectively
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Figure 4. Long- and short-term trends in peak coloration onset derived from satellite (a) and (b), field observation (c) and (d), and
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evaluate satellite-derived phenology (Liang et al 2011,
Liu et al 2015), site-specific comparison of long-term
trends provides an alternative way to evaluate the
reliability of the satellite-derived trends. Figure 4
displays the interannual variation in the timing of peak
coloration onset derived from satellite data, field
foliage color observations and GPP data at Harvard
Forest. Linear least-squares regression, which has been
commonly used to determine temporal trends in
phenological events, showed no significant trend in
any of the three datasets (figures 4(a), (c) and (e)).
In contrast, SSA produced the first reconstructed
series of peak coloration onset, which accounted for
more than 99% of the variation and closely
represented the dynamic trend. The trend indicated
that satellite-based peak coloration was delayed by up
to 3 d from 1991 to 2001 and advanced by up to 5 d
from 2002 to 2014 (figure 4(b)). Similarly, the field-
based peak coloration was also delayed by up to 3 d
from 1991 to 2002 and advanced by up to 4 d from
2003 to 2014 (figure 4(d)). The GPP-based peak
coloration showed a late trend from 1991 to 2001 an
6

early trend from 2002 to 2006 and little change from
2007 to 2014 (figure 4(f)). The breakpoints calculated
using the BFASTmethod were found to be located in
2001 or 2002 for all three datasets. Evidently, the
trend in satellite-based peak coloration onset was
consistent with field observations and GPP-based
measurements during two periods, 1991–2001 and
2002–2014, at Harvard Forest.

An early trend in the timing of peak coloration was
revealed from both satellite observations and GPP
measurements at Park Falls with no distinguishable
breakpoints (figure 5). The satellite-derived trend
became earlier at a rate of 0.5 d yr�1 (P < 0.05)
from 1997 to 2014 as revealed by linear regression
(figure 5(a)), which was similar to the temporal
pattern derived from SSA (figure 5(b)). Similar
temporal patterns were found for GPP-based peak
coloration onset although the GPP data presented a
somewhat larger interannual variation than the
satellite data (figure 5(c)). The GPP-based peak
coloration onset was advanced by up to 20 d from
1997 to 2014 (figure 5(d)). Overall, the temporal
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regression line (a) and (c).
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trends in peak coloration onset as determined from
satellite and GPP showed close agreement.

The time series of peak coloration onset from both
satellite and GPP data at Morgan Monroe State forests
exhibited no significant trends from 1999 to 2014
using simple linear regression (figures 6(a) and (c)).
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However, using SSA, we found that satellite-based
peak coloration onset was delayed by up to 3 d from
1999 to 2006 and advanced by up to 4 d from 2007 to
2014 (figure 6(b)). This temporal pattern was in close
agreement with the trends in GPP-based peak
coloration onset from 1999 to 2014 (figure 6(d)).
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Figure 7. Spatial pattern of long-term trends in peak coloration onset (DOY) from 1982 to 2014 in deciduous andmixed forests in the
central and eastern United States. (a) The year of breakpoint occurrence; (b) trend (d y�1) in pixels before the breakpoint (first time
period, from 1982 to the year of breakpoint occurrence); (c) trend (d y�1) in pixels after the breakpoint (second time period, from the
year of breakpoint occurrence to 2014); and (d) trend (d y�1) in pixels without a breakpoint. The dark grey color in (a), (b) and (c)
represents the pixels without a breakpoint, but in (d) represents the pixels with a breakpoint.
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Spatial pattern in peak coloration trends
Figure 7 presents the spatial pattern of the long-term
trend in satellite-based peak coloration onset in both
deciduous and mixed forests using SSA-BFAST.
Among all pixels, 25% were determined to have
one breakpoint that mainly occurred from 1998 to
2004 although exceptions were found in a few pixels
(figure 7(a)). These pixels were mainly distributed at
latitudes north of 37°N, including northern
Minnesota, Wisconsin and Michigan, western Maine,
eastern New Hampshire, and northeast New York
(figure 7(a)). In 96% of the 25% pixels with one
breakpoint, the onset of peak coloration was delayed
during the first time period, but it transitioned to
an advance in timing following the break point
(figures 7(b) and (c)). 75% of the pixels showed
monotonic trends, 35% of which exhibited a late
trend and 40% an early trend (figure 7(d)). The pixels
with a monotonic late trend were mainly distributed
in northern Minnesota, Wisconsin and Michigan,
West Virginia and western Louisiana and Arkansas.
In contrast, pixels exhibiting a monotonic early trend
were mainly distributed in eastern Maine, southeast-
ern New York, Pennsylvania, and western Alabama
(figure 7(d)).
8

Correlation of peak coloration onset with
temperature and precipitation at three
observation sites
Figure 8 illustrates the correlation between peak
coloration onset and mean temperature within the
optimal PL at three field sites. The correlation
coefficient indicated that the onset of peak coloration
was significantly correlated with mean temperature
within the optimal PL (P < 0.05) although the
optimal PLwas 76 d, 25 d, and 68 d at Harvard Forest,
Park Falls and Morgan Monroe State Forest,
respectively (figures 8(a), (d) and (g)). Overall, the
trends in mean temperature within the optimal PL
varied greatly with sites. At Harvard Forest, the mean
temperature significantly increased by 0.04 °C per year
(P < 0.05) from 1991 to 2014 (figure 8(b)). This
pattern could not fully explain the non-significant
changes in peak coloration (figure 4(c)). However, SSA
revealed that the first reconstructed series of optimal
PLmean temperature accounted for more than 98% of
the signal. The first reconstructed temperature series
increased from 1991 to 2004 then decreased from 2005
to 2009 and slightly increased again from 2010 to 2014
(figure 8(c)). This temporal pattern could better
explain the delay in peak coloration from 1991 to 2002
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Figure 8. Correlation coefficients between peak coloration and mean temperature during the different PLs at Harvard Forest from
1991 to 2014 (a), Park Falls from 1997 to 2014 (d) and Morgan Monroe State Forest from 1999 to 2014 (g); long-term trend in mean
temperature within the optimal PL using linear regression (b), (e), (h) and SSA (c), (f), (i) at Harvard Forest, Park Falls and Morgan
Monroe State Forest, respectively.
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and the advance from 2003 to 2014 (figure 4(d)). At
Park Falls, Wisconsin, the mean temperature dis-
played with a large amount of interannual variation
(SD = 1.67 °C). Therefore, no significant decrease was
found using linear regression (figure 8(e)). However,
SSA revealed that optimal PL temperature clearly
decreased from 1997 to 2014 (figure 8(f)), which
could explain the advanced peak coloration onset at
this site (figure 5). In Morgan Monroe State Forest,
simple linear regression revealed no significant
temporal trend in mean temperature over the 16 yr
of the study (figure 8(h)). In contrast, SSA indicated
that the mean temperature increased by 0.5 °C from
1999 to 2006 and decreased by 0.5 °C from 2007 to
2014 (figure 8(i)), which was in close agreement with
temporal changes in the onset of peak coloration at
this site (figure 6). In addition, there were no
significant correlation between the onset of peak
coloration and cumulative precipitation within the
optimal PL at these three sites, so we did not present
these results.
9

Correlation of peak coloration onset with
temperature and precipitation across the central and
eastern United States
Figure 9 presents the spatial pattern of optimal period
length and the correlation coefficients of peak
coloration onset with mean temperature and cumula-
tive precipitation during the optimal PL in deciduous
and mixed forests, respectively. In general, the optimal
PL followed a latitudinal gradient, which was longer in
southern than in northern regions (figure 9(a)).
Specifically, autumn optimal PL was around 30 d in
northern Minnesota, around 60 d in Maine, Con-
necticut, Massachusetts and West Virginia, and
around 90 d in Western Arkansas, Louisiana, central
Alabama and Georgia. The daily mean temperature
within the optimal PLwas significantly correlated with
peak coloration onset (P < 0.1) in approximately
55.5% of pixels (table 1). The pixels with significant
positive correlations were mainly distributed in
northern Minnesota and Michigan, Maine, Arkansas
and Louisiana, Connecticut, and West Virginia.
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Figure 9. Spatial pattern of correlation between peak coloration onset and temperature or precipitation. (a) Optimal period length of
temperature, (b) correlation coefficient between peak coloration onset and mean temperature within the optimal PL (P < 0.1), (c)
optimal period length of cumulative precipitation, and (d) correlation coefficient between peak coloration onset and cumulative
precipitation within the optimal PL (P < 0.1). The dark grey color indicates the deciduous and mixed forests with non-significant
correlation between the onset of peak coloration and optimal PL temperature or precipitation.

Table 1. Pixel proportions (%) with significant and non-significant correlations between the onset of peak coloration and mean
temperature within the optimal PL, which were then divided by the correlations between the onset of peak coloration and cumulative
precipitation within the optimal PL. Note no pixels with significantly negative correlations between the onset of peak coloration and
mean temperature. Sig_Positive—significantly positive correlation, Sig_Negative—significantly negative correlation, and Sig_Non—
non-significant correlation.

Temperature
Sig_Positive Sig_Non

55.5% 44.5%

Precipitation
Sig_Negative Sig_Positive Sig_Non Sig_Negative Sig_Positive Sig_Non

18.8% 5.4% 31.3% 5.8% 12.2% 26.5%

Environ. Res. Lett. 12 (2017) 024013
The optimal PL of cumulative precipitation varied
across the central and eastern United States, ranging
from 30 d to 150 d, but regular spatial pattern was not
revealed (figure 9(c)). The correlation between the
onset of peak coloration and cumulative precipitation
within the optimal PL was significantly positive in
17.6% pixels and negative in 24.6% pixels (figure 9(d)
and table 1). Compared to figures 9(b) and (d)
indicates that the positive correlations were mainly
distributed in the region where the peak coloration
onset was non-significantly correlated with mean
temperature, such as northwestern Pennsylvania,
central Virginia, western Alabama, Mississippi, eastern
South Carolina and Georgia. In contrast, the negative
correlation was generally distributed in Minnesota,
10
Michigan, Maine, Arkansas, Louisiana (figure 9(d)),
where the peak coloration onset was significantly
positively correlated with mean temperature (table 1).
Discussion and Conclusions

Statistically significant temporal trends in long-term
phenological time series are not always detected using
a linear regression model because phenological
changes may not exhibit a monotonic trend (Menzel
et al 2006, Shen et al 2014, Zhou et al 2014). However,
unlike linear regression SSA does not impose linearity
on the time series and has been successfully used to
describe the complex variation in spring phenology of
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three perennial plant species from 1983 to 2002
(Keatley and Hudson 2004). The current study
demonstrated the advantage of using SSA in the
analyses of a long-term time series of peak coloration
onset derived from satellite data. For example, a simple
linear regression found no significant trends in the
onset of peak coloration observed from either satellite,
field, or flux tower measurements at Harvard Forest
from 1991 to 2014 but SSA revealed a delay in peak
coloration onset from 1991 to 2002 and an early trend
from 2003 to 2014. Although SSA produces a set of
components, the first component of the time series of
peak coloration onset described variation in the long-
term trend because it accounted for more than 99.0%
of signal (Vautard et al 1992). The trends identified by
SSAwere considered to be ‘significant’ because the first
component was usually above the noise floor (Shun
and Duffy 1999, D’Odorico et al 2002), however,
further work is required to apply statistical significance
to SSA-based trends (Elsner and Tsonis 1996).

Breakpoints were identified from the first compo-
nent of peak coloration time series derived from SSA
because it contained very high signal-to-noise ratio
(Verbesselt et al 2010). In particular, we determined
breakpoints caused by reversed slope directions for
each pixel using BFAST although breakpoints could
also be a result of an abrupt change in amplitude.
Abrupt changes in slope amplitude may occur with a
change in satellite sensor (De Beurs and Henebry
2005) such as inconsistencies between AVHHR on
different satellites or between AVHRR and MODIS.
However, the reversed slope directions are unlikely
caused by sensor artifacts. Given that the break point
mainly shifts between 1998 and 2004 and that
observations from field sites and satellite tend to
align, the break points identified in this study were
unlikely associated with the transition from AVHRR to
MODIS. This implies that the breakpoints derived in
the current study were mainly associated with climatic
variation. It should be noted, however, that the SSA-
BFASTmethod in detecting break points requires the
choice of a length of window (or segment) based on
the structural changes of the time series (Keatley and
Hudson 2004, Verbesselt et al 2010). Thus, the change
of window length could have potential influences on
the results.

This study is the first to investigate and validate
temporal trends in satellite derived fall foliage
coloration. Validation of satellite-based peak colora-
tion is important for accurate determination of the
onset of the autumn season but direct validation is
challenging and impractical for a coarse resolution
pixel. This is because the samples of field observations
that are spatially compatible with satellite coarse pixels
are very limited although landscape phenology could
be upscaled from plot-level observations (Liang et al
2011). However, long-term trends should be consis-
tent if interannual variation between a small plot and a
large pixel is similarly controlled by climate change.
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Therefore, satellite-derived long-term trends in this
study were validated using trends in field foliage color
observations and GPP measurements over a period of
more than 10 years. The validation revealed that the
temporal trends in peak coloration onset from the
three datasets were consistent whether the breakpoint
existed (such as Harvard Forest and Morgan Monroe
State Forest) or not (such as Park Falls). This suggests
that the satellite measurements could effectively
monitor the temporal trend in peak coloration onset
of deciduous and mixed forests.

The trend analysis used here demonstrated that a
breakpoint was detected in 25% of the pixels in which
the onset of peak coloration was delayed over the first
time period and advanced over the second time
period. These breakpoints mainly occurred during
1998–2004 and distributed at latitudes north of 37°N.
In the remaining 75% of pixels, peak coloration onset
was delayed in 35% and advanced in 40% of pixels
from 1982 to 2014. These results suggested that the
onset of peak coloration in most deciduous and mixed
forests across the northeastern United States switched
from a delayed trend in the 1980s and 1990s to an early
trend during the past decade. Compared to previous
work simply showing delayed autumn phenology
across a range of ecosystems over the past several
decades (Jeong et al 2011, Dragoni and Rahman 2012,
Gill et al 2015), our study revealed the dynamic trends
in autumn phenology for all pixels using SSA. Earlier
autumn phenology was found to also contribute to a
shorter growing season, which may shorten the period
of net carbon dioxide uptake and thus decrease carbon
storage (Churkina et al 2005).

Our results showed strong evidence of a control of
temperature within an optimal PL on interannual
variation in peak coloration onset of deciduous and
mixed forests in the central and eastern United States.
Examinations of the validation sites revealed that the
long-term trend in peak coloration onset basically
tracked the trend in optimal PL temperature although
the pattern varied greatly with variation in local
climate. The results across the central and eastern
United States demonstrated that peak coloration onset
was significantly correlated with the mean temperature
within an optimal period length in about 55.5% of
pixels. Spatial patterns indicated that the optimal
period length was about two months shorter in
northern than in southern regions. This latitudinal
gradient was comparable to the variation in the onset
of peak coloration. This coincident spatial variation
between peak coloration onset and optimal period
length likely suggests that summer temperature may
influence autumn foliage coloration. The spatial
variation in peak coloration onset and optimal period
length also implies that temperature impacts vary
geographically instead of consistently across the
region, which is likely controlled by the geographic
adaption relationships between vegetation phenology
and climate influences through both contemporary
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and historical variability (Liang et al 2016). The plant
optimal adaption or temperature memory may
determine to a large extent the geographic distribu-
tions and vegetation seasonality (Rohde and Junttila
2008). This has been demonstrated in a recent study
that spatial pattern of long-term spring phenology
across the United States was associated with vegetation
climate adaptation (Liang et al 2016). However,
mapping vegetation climate adaptation patterns at a
large scale is challenging (Liang et al 2016) and the
mechanism of plant memory to dynamic environ-
ments is still poorly understood (Crisp et al 2016). As a
result, further research is needed to investigate the
impacts of temperature memory on the autumn
phenology and its spatial pattern.

Precipitation could be another important factor
influencing peak coloration onset (Leuzinger et al
2005, Shen et al 2015), but the mechanism of effects of
precipitation on autumn phenology is much more
complex than temperature. The correlation between
peak coloration onset and cumulative precipitation
within the optimal PL was significantly positive in
12.2% of pixels where non-significant correlations
between the onset of peak coloration and mean
temperature within the optimal PL were found, which
indicated that less precipitation during late summer
and autumn period could advance the occurrence of
peak coloration if temperature controls were weak.
This is because more precipitation, especially in
summer, should promote vegetation growth, which, in
turn, could delay the timing of peak coloration onset
(Shen et al 2015). The combination of temperature
and precipitation could explain the interannual
variations in the onset of peak coloration in 67.6%
(55.5% plus 12.2%) of pixels across the central and
eastern United States. However, 24.6% of pixels
showed significantly negative correlations between the
onset of peak coloration and cumulative precipitation
within the optimal PL, which did not necessarily have
a particular biophysical meaning. This is because the
onset of peak coloration in most of them (18.8%) was
significantly controlled by temperature. In other
words, the influence of precipitation was likely
overridden by temperature.

In conclusion, satellite data over the past 33 years
revealed a delayed trend in the onset of peak coloration
during the 1980s and 1990s. However, this trend was
reversed during the most recent decade when the onset
of peak coloration became earlier in most deciduous
and mixed forests of the central and eastern United
States. The change in trend was strongly associated
with variation in late summer and autumn tempera-
ture in 55.5% of pixels. In 12.2% of the remaining
44.5% of pixel, precipitation could well explain the
interannual variations in the onset of peak coloration.
These results are important for determining the
impact of future changes in the onset of peak
12
coloration on carbon uptake in forests across the
US and elsewhere.
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